DSSL Reading Group: Differential Privacy

Dwork 2009:

- 1. What is differential privacy?
 - a. Definition is inherently symmetric, so bound is above and "below"
 - b. What are the attack vectors this is protecting against?
 - c. Function sensitivity is critical here:
 - Key: everything is a histogram
 - d. Alex's crazy idea: just tell people you're adding noise, but don't do anything. How does this help us to understand the benefits / drawbacks of DP?
 - It obviously fails if K is public, but what if K could remain private? If people think there is noise that there isn't, does that still guarantee privacy?
- 2. What does or does not DP guarantee?
 - a. How does the guarantee in Definition 1 relate to intuitive notions of privacy?
 - b. Remark 2 on page 3?
- 3. Laplacian noise example/theorem
- 4. Examples from Dwork 2009
 - a. Boolean vectors
 - i. Complicated process just to get a conditional probability
 - ii. "The number t is rather large": There's something odd here. With DP we limit the amount of information released in a query, and this forces us to make many queries to get useful information. So are our aims actually compatible?
 - iii. Can we use a query that directly asks the conditional probability question? (or is it difficult to determine the sensitivity?).
 - E.g. two "count" queries: count (A and B) and count(A)
 - b. Contingency table release
 - i. Add noise to the "full" contingency table
 - 1. Non-integer
 - 2. Possibly negative
 - 3. Consistency in projections is immediate
 - 4. Very low signal to noise ratio
 - ii. Add noise to each sub-table independently
 - 1. Possible inconsistencies between tables
 - 2. Type mismatch (for method i as well) with downstream applications
 - iii. Fourier Domain
 - 1. Fourier transform of 2^k binary vectors
 - 2. Fewer noise terms needed in some cases
 - iv. Linear Programming & Rounding:
 - 1. Create a whole new dataset with marginals pretty close to the true marginals.
 - c. Learning Halfspaces

Papers

Dwork 2009

Ruggles 2019: DP and the Census (interesting arguments both for and against the use of DP in the Census, non-technical) $\,$

Dong 2020: Gaussian DP