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Discussion Questions

Rubin points out that “causal inference is impossible without making
assumptions.” As an researcher, how do you determine if your assumptions
are too weak, too strong, or just right?

By incorporating prior information and making stronger modeling assump-
tions, the Bayesian framework for causal inference that Rubin outlines
seems to be able to go beyond just making assumptions on the assignment
mechanism. What are the advantages and disadvantages of this approach?

As Rubin points out in his example about concomitant variables, even
very smart people can be mislead by questions of causality. How does this
manifest itself presently in research involving estimation of causal effects?

2. The Causal Estimand — ”The Science”

Importance of understanding precisely the quantity you are interested in —
the causal estimand.

Basic example: N units (particular objects, treatment receivers), covariates
X which cannot be affected by treatment. Potential outcomes: Y;(1) and
Y;(0) which is the value for the outcome variable in the universe where the
ith unit received the active treatment versus the control treatment.

The ”Science” is contained in the X, Y (1),Y(0).
Unit level causal effects Y;(1) — ¥;(0).

Fundamental problem of causal inference: Cannot observe both Y;(1) and
Y;(0) because time cannot be unwound.

Summarizing causal effects, e.g. mean unit level causal effect for some
subset of the indices.

Causal effect must be comparison of {Y;(1),7 € S} with {¥;(0),7 € S}.
Can’t compare different sets of units.



e Important assumption: SUTVA (Stable Unit Treatment Value Assumption).
Two parts: no interference between units i.e. Y;(1) and ¥;(0) is not affected
by the treatment assigned to the other units. No hidden treatment versions:
active treatment on unit ¢ always leads to Y;(1)

e Third underlying assumption: the science (both in covariates and outcomes)
are not affected by how or whether the subjects try to learn about about
it.

e ”Causal inference is impossible without making assumptions, they are the
strand which links statistics to science”.

3. Fisher and Neyman on the Potential Outcomes Notation
in Randomized Experiments and Beyond

e Importance of potential outcome notation.

o Average causal effect, Z@Z\; w is important causal estimand. Dif-
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ference in observed treatment means is unbiased estimator of it and Z—ll + Z—’;
is a positively biased estimator of its variance (Neyman).

e Fisher Sharp Null Hypothesis: For each unit, the treatment does exactly
nothing. That is, Y;(1) = Y;(0) for all . Sharp because under it, all poten-
tial outcomes are known for all units, regardless of the actual assignment.

e Fisher 1918 passage.

e Terminology alert: ”Counterfactuals” versus ” Potential Outcomes”

4. The Assignment Mechanism

e Assignment Mechanism: A method for assigning treatments to units, which
creates missing potential outcomes.

e W, is the assignment for unit ¢. The only random quantity in this setup.

e Assignment mechanism is an assignment of the conditional probability
P(W]X,Y(1),Y(0)).

o B(ji—5o|X,Y (1), Y (0)) = V(1)~Y(0) and V(5 —90) > B (& + X, ¥(1), Y (0))
(Neyman).

e Random experiments are a subset of assignment mechanisms, and under
RE, it can be that SUTVA is sufficient assumption for causal inference.

e Random experiments are an ignorable non-trivial assignment mechanisms:
Non-trivial in that every unit has some possibility of being assigned each
treatment 0 < P(W; = 1|X,Yos) < 1. Ignorable in that potential out-
comes don’t affect assignment mechanism probabilities, just the observed
outcomes: P(W|X,Y(0),Y (1)) = P(W|X, Yobs)-



e In sequential experiments, that’s when dependence on Y, arises. Classical
random experiments are unconfounded P(W|X) = P(W|X, Yops)-

e Collapsing potential outcomes into just Y,ps mixes up science and what
we to try and learn about science.

e Only a model on the assignment mechanism still allows for progress on
statistical inference, even for observational studies (propensity scores).

5. Models on the Science

e However models on science can be have a critical role (Bayesian inference).

e Models only on assignment mechanism are more robust (but still require
SUTVA), models on science allow for handling greater complexity and
logical summaries of results.

e Using bayesian framework to create posterior predictive distribution for
the missing half of the potential outcomes.

e Using P(X,Y (1),Y(0)) model for the science + P(W|X,Y(0),Y (1)) assign-
ment mechanism, then can find PPD for P(Y,,:5]| X, Yobs, W) x P(X,Y (1),Y(0))P(W|X, Yops)

e Can calculate distribution of any causal estimand, which is function of
X,Y(1),Y(0).

e Randomized Experiments have impact on bayesian inference: Any distri-
bution on the science will be exchangeable. Ignorable means that second
term is a constant.

e "Rubin’s Causal Model” — Extends potential outocomes to all situations,
explicitly includes assignment mechanisms with possible depenedence on
all potential outcomes, embeds assignment based + bayesian likelihood in
common framework.

6. Decisions: Based on current knowledge of science and
on costs of decisions

e Posterior distribution of causal estimands is ”Summary of current knowl-
edge of the science” from current data and past science (prior dist).

e Fisher perspectieve: unknown to what purpose discoveries will be put, so
should not introduce cost functions.

e Likelihood function vs signficance tests vs accept/reject tests.



7 Complex Experiments: ”Direct” and ”Indirect” Causal
Effects

Concomitant random variable: Outcome variable not of primary interest,
but is on causal pathway from treatment to primary outcome. Not a
covariate, but may want to adjust for it.

Fisher suggestion: Analyze Y,,s via W and the concomitant Cpps with
ANCOVA, but this is equivalent to regressing Y,,s on W, C\yps, which he
called naive earlier. Compares Y;(1) with Y;(0) for those with common level
of Cyps which is not a causal effect because C,ps is affected by treatment.

Two thought experiments: When treatment impacts Cbut not Y i.e. no
direct impact of treatment on outcome after adjusting for C, but if we
condition on Cyys, actually appears that treatment plots do worse. Problem
still arises even when there is direct treatment effect after adjusting for C.

Controlling for C,ps essentially breaks ignorability of treatment assign-
ments.

Fisher’s ANCOVA is predicated on ignorability of assignment bc assumes
set of subjects with fixed Cops are randomly assigned treatment/control,
which is not the case.

Rubin posits that combining Y and C into 1 variable (i.e. Y / C) ior treating
(C)Y) as a bivariate outcome is the better route for co-contaminants.
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Discussion Questions

Pearl states that whether the “three rules” of the calculus of interventions
are sufficient to derive all identifiable causal effects remains an open
question. Is that still true? Do the given inference rules align with our
intuition about causality?

Pearl suggests that ”standard probability theory” is too weak to “describe
the precise experimental conditions that prevail in a given study”. Do we
agree with this statement? How does this align with Rubin’s potential
outcome notation?

The title of the paper explicitly applies causal diagrams to empirical
research. Is the relatively abstract “calculus of intervention” put to good
use by researchers in the field? If so, where? If not, what obstacles to
adoption are there?

1. Introduction

Classic Cochran example of eelworm control via fumigants can be ex-
pressed/analyzed via DAGs

Causal diagrams help to: 1. Explicitly encode causal assumptions underly-
ing model. 2. Decide if assumptions are sufficient to consistently estimate
target causal effect. 3. If yes, gives closed form expression for estimator, If
no suggests what observations are necessary.

Hollow circle indicates unobserved quantity, full circle indicates observed.

Dashed arrows connect nodes where at least one quantity is not observed,
full arrows if both observed.

Causal assumptions about how one quantity affects another are encoded
by present arrows + direction. Missing arrow indicates that one quantity
cannot directly affect another.



e Check notation: Z signifies that random variable X is set to fixed value z
by external intervention.

2. Graphical Models and the Manipulative Account of Cau-
sation

2.1 Graphs and conditional independence.

e DAGs useful for representing conditional independence assumptions, as
can identify conditional independence restrictions that are implicit in
factorization of joint probability:

n

P(Xy,....X,) = [[ P(Xilpa:)
i=1

where pa; is some subset of (X1, X;_1). If construct DAG where variables
are in pa; are represented by the parents of node X;, then independences
implicit in the above factorization can be recovered by d-separation test.

e D-separation: X,Y, Z are three disjoint node sets in a DAG, and p is an
(undirected) path between a node in X and on in Y. Z is said to block p
if either some node w on p has converging arrows along p and neither w or
its descendent are in Z, or there is some node w on p without converging
arrows along p and w € Z.

e If for every p between X and Y, we have that Z blocks p, then Z d-separates
X, Y: (X LY|Z)q.

e There is 1-1 correspondence between conditional independence assumptions,
and triples of nodes that are d-separated.

e Alternative test for d-separation: Delete all nodes from G except those in
X,Y, Z and their ancestors. If any two nodes share a common ancestor,
connect with undirected arrow. Remove all direction from arrows. If Z is
a cut-set of the graph which separates X,Y, then Z d-separates X,Y.

2.2 Graphs as Models of Intervations

e Non parametric structural equations: for each RV, have X; = f;(pa;, €;)
where f; is some fixed function and all the ¢; are assumed mutually
independent disturbances (exogenous factors). If any €; could plausibly
affect multiple X, then it should be included in model as unobserved
variable with those X; as children.

e Correspondence between causal diagrams and potential outcomes: Read
equality as ”is determined by”.



Because each ¢; is independent of non-descendants of X, child-parent
characterization as determinstic function instead of conditional probability
leads to same independence constraints. But also provides language of
how to specify resulting distribution changes with respect to external
interventions.

Atomic intervention Set(X; = x;) changes functional mechanism determin-
ing X; from X; = fi(pa;, €;) to X; = x; while keeping all other mechanisms
the same.

Causal effect: for disjoint sets of variables, X,Y, causal effect of X on
Y is function from X to space of distributions on ). For each x € X,
P(y|z) = P(Y = y) under new collection of mechanisms which arises from
deleting all equations for X; in X and substituting values x; into all other
mechanisms.

Graphically, Set(X; = x;) amounts to removing lines from pa; to X; and
keeping rest of network the same.

. Controlling Confounding Bias

Setup is: DAG G, observed variables V{, from non-experimental context,
want to estimate impact of Set(X; = z;) on X;: P(x;|Z;).

Set of variables Z satisfies back-door criterion relative to X; and X if: No
node in Z is a descendent of X;, and Z blocks every path between X; and
X; which contains an arrow into X; (i.e. the back door)

Point of back-door is not every path between X;, and X; need be blocked.
Only those which enter from the back-door.

If Z satisfies back-door criterion for X,Y, then causal effect of X on Y is
identifiable, and given by

P(ylz) = > Plylz, 2)p(=).

Front door criterion: If Z intercepts all directed paths between X and
X and: No back door paths between X and Z, every back door path
between Z, X is blocked by X. Then the causal effect between X and X
is identifiable and given by

P(yl) = P(zlz) Y P(yla’, ) P(z')

Figure 3 looks nearly identical to the diagram of confounding we teach in
intro stats courses. I (Austin) am having a tough time buying that front
door criterion holds. If the unobserved affects both X and Y, how can we
possibly derive a form for the causal effect from X to Y? I am missing
something from this portion.



4. A Calculus of Intervention

Use diagrams to manipulate causal effects P(y|%)

If can reduce P(y|&) into an expression involving standard (unchecked)
probabilities of observed quantities, then causal effects of X on Y is
identifiable.

Three rules governing: insertion/deletion of observables, action/observation
exchange, insertion/deletion of actions.

Not clear if those three rules are sufficient to derive all identifiable causal
effects

Example of using those three rules to derive the front-door expression.

If we want to estimate P(y|Z), but not identifiable. If we can’t run
experiment on X directly, can we identify another set of variable Z which
can be controlled?

If we can transform P(y|Z) into expression with only z checked, then can
recover causal effect of X on Y via experiment using Z.

5. Graphical Tests of Identifiability

Bow pattern is and equation Y = fy (X, U, ey ) where U is unobserved. It
does not permit causal inference.

Presence of a variable Z — X. Where Z is connected to X, but not to U.
This will facilitate the relationship.

Confounding arc: If there is a back-door path which contains only un-
observed variables and no converging arrows along the path, can replace
whole path with confounding arc.

If confounding arc present between X, Y, then P(y|Z) cannot be identified,
except when linearity assumptions are made (Instrumental Variables)

For non-parametric models, addition of arcs can impede but not help
identifiability, bc reduces possible d-separation.

Examples + analysis of simple graphs where P(y|#) is identifiable.

Example similar to Rubin, where identifiability of P(y|Z) requires adjusting
for concomitant RV, but adjustment has unusual form.

Local identifiability not necessary for global identifiability.

Also examples of non-identifiable DAGs.



